An LRP5 Receptor with Internal Deletion in Hyperparathyroid Tumors with Implications for Deregulated WNT/β-Catenin Signaling

نویسندگان

  • Peyman Björklund
  • Göran Åkerström
  • Gunnar Westin
چکیده

BACKGROUND Hyperparathyroidism (HPT) is a common endocrine disorder with incompletely understood etiology, characterized by enlarged hyperactive parathyroid glands and increased serum concentrations of parathyroid hormone and ionized calcium. We have recently reported activation of the Wnt signaling pathway by accumulation of beta-catenin in all analyzed parathyroid tumors from patients with primary HPT (pHPT) and in hyperplastic parathyroid glands from patients with uremia secondary to HPT (sHPT). Mechanisms that may account for this activation have not been identified, except for a few cases of beta-catenin (CTNNB1) stabilizing mutation in pHPT tumors. METHODS AND FINDINGS Reverse transcription PCR and Western blot analysis showed expression of an aberrantly spliced internally truncated WNT coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) in 32 out of 37 pHPT tumors (86%) and 20 out of 20 sHPT tumors (100%). Stabilizing mutation of CTNNB1 and expression of the internally truncated LRP5 receptor was mutually exclusive. Expression of the truncated LRP5 receptor was required to maintain the nonphosphorylated active beta-catenin level, transcription activity of beta-catenin, MYC expression, parathyroid cell growth in vitro, and parathyroid tumor growth in a xenograft severe combined immunodeficiency (SCID) mouse model. WNT3 ligand and the internally truncated LRP5 receptor strongly activated transcription, and the internally truncated LRP5 receptor was insensitive to inhibition by DKK1. CONCLUSIONS The internally truncated LRP5 receptor is strongly implicated in deregulated activation of the WNT/beta-catenin signaling pathway in hyperparathyroid tumors, and presents a potential target for therapeutic intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

The Internally Truncated LRP5 Receptor Presents a Therapeutic Target in Breast Cancer

BACKGROUND Breast cancer is a common malignant disease, which may be caused by a number of genes deregulated by genomic or epigenomic events. Deregulated WNT/beta-catenin signaling with accumulation of beta-catenin is common in breast tumors, but mutations in WNT signaling pathway components have been rare. An aberrantly spliced internally truncated LRP5 receptor (LRP5Delta666-809, LRP5Delta) w...

متن کامل

Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling.

Frizzled and LRP5/6 are Wnt receptors that upon activation lead to stabilization of cytoplasmic β-catenin. In this study, we review the current knowledge of these two families of receptors, including their structures and interactions with Wnt proteins, and signaling mechanisms from receptor activation to the engagement of intracellular partners Dishevelled and Axin, and finally to the inhibitio...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Canonical wnt signaling in dendritic cells regulates Th1/Th17 responses and suppresses autoimmune neuroinflammation.

Breakdown in immunological tolerance to self-Ags or uncontrolled inflammation results in autoimmune disorders. Dendritic cells (DCs) play an important role in regulating the balance between inflammatory and regulatory responses in the periphery. However, factors in the tissue microenvironment and the signaling networks critical for programming DCs to control chronic inflammation and promote tol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Medicine

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2007